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A theoretical model is developed for predicting the critical plate-orifice distances for 
viscous fluid buckling in plane and axisymmetric low-Reynolds-number bounded 
jets in stagnation flow. The theory is based on a hypothesis that treats the spatial 
growth of perturbation to the jet in a manner that distinguishes between the near- 
wall and far-field regions of the jet. This perturbation growth rate is shown to be the 
important parameter in the determinat,ion of the critical plate-orifice distances. 

This study also uses a one-dimensional model of the fluid column when it is 
displaced from equilibrium to determine the frequency at which buckling is first 
initiated in the case of the plane jet. 

1. Introduction 
The low-Reynolds-number instability observed when a high-viscosity fluid jet 

flows vertically against a flat surface, and commonly referred to as fluid buckling, has 
been the subject of several studies in recent years. Taylor (1968) first brought this 
phenomenon to the attention of the scientific community. Experimental work aimed 
at  quantifying this behaviour in terms of the common fluid mechanical parameters 
was subsequently reported by Cruickshank ( 1980) and Cruickshank & Munson 
(1981). 

The term fluid buckling has since been extended by Bejan to a large class of 
meandering flows of which viscous fluid buckling is but a subset. A summary of the 
current state of the subject is given in his review article (Bejan 1987) where an 
exhaustive bibliography is also provided. 

Figures 1 and 2 show an axisymmetric jet and a plane jet respectively undergoing 
the low-Reynolds-number instability we call viscous fluid buckling. Detailed 
descriptions of the observed behaviour during and subsequent to the onset of the 
instability are provided in Cruickshank (1980) and Cruickshank & Munson (1981). In  
the developments that follow, theoretical models will be developed for predicting 
the critical height at which the instabilities first appear in plane and axisymmetric 
jets. Qualitative explanations will also be provided for some of the peculiar features 
of viscous fluid buckling that were documented by these workers. Cruickshank & 
Munson (1983) have provided a model for the buckling frequency a t  different 
plate-orifice distances for the case of the round jet. This paper now provides a model 
for the frequency at  the onset of buckling for the case of the plane jet. 

2. The mechanics of fluid buckling: a hypothesis 
In  the following development, we assume that the problem of fluid buckling can 

be analysed by considering the stagnation jet flow as consisting of two distinct 
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FIGURE 1. The buckling of A fluid column. ( a )  Axisymmetric jet in stagnation Aow. i t ) )  

Axisymmetric jet, at point’ of buckling. (c) The coiling that exists after buckling. 

regions: the far-field region in which the jet diameter is assumed constant, and a 
near-wall region where the wall’s effects arc concentrated. Disturbances of the far- 
field jet are assumed to grow exponentially in the Aow direction with a growth rate 
parameter designated a,  and in the near-wall region to decay at a decay rate 
consistent with the requirement that the no-slip condition be met a t  the wall. These 
two growth and decay parameters, in spite of having these distinct behavioural 
characteristics in their respective regions, are expccted to have equal values (for 
continuous transition from the far-field to thc near-wall) at the line separating these 
two regions. 

For an axisymmetric jet flowing against a flat surface the no-slip condition 
suggests that the near-wall value of a! should be such that the perturbation velocities 
decay in the wall region. Hcnce a should be (in a local sense) of the form 

H’ 
a! = k- - ,  

d2 

a t  or near the wall. The coefficient k is a proportionality constant which we will 
arbitrarily set equal to 1.0, d is thc local jet diameter and H‘ is the distance from the 
orifice to some point in the wall region. Hence a+O as H’ and d- tco  and the 
perturbation velocities will decay accordingly for all values of H’. 

If the plate-orifice distance is H ,  and the thickness of the wall region is Az, then 
from figure 3, the transition line is a t  a distance H - A z  from the orifice. The 
maximum near-wall value of a thus occurs at the transition line with a value equal 
to ( H - A z ) / d :  since d increases rapidly in this region. do is thc constant diameter of 
the far-field portion of the jet. 

Physical observation indicates that  the transition line tends to move closer to the 
plate as the plate-orifice distance increases and thus the deceleration rate in the wall 
region is expected to increase significantly as the thickness of the wall region 
decreases. Indeed, in the. limit Az --f 0, the decelcratiori ratc could become infinite, 
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FIGURE 2. Folding of a plane unstable jet. ( a )  A three-dimensional view. ( b )  Side view. 
(c) Front view (D x d ,  = 0.414 cm x 4.14 cm). 

clearly, a physically implausible condition which can only be negated if the transition 
from the far-field to the near-wall region became a discontinuous one. This critical 
condition when this discontinuity first appears corresponds to a near-wall value of a 
equal to H / d i .  

Figure 3 shows an expanded view of the region near the wall. The jet diameter near 
the wall is assumed to go smoothly to infinity and the thickness of this region is 
assumed to be very small. In  figure 3,O-a, 0-b and 0-c represent the possible relative 
magnitudes of the far-field perturbation velocities when they are less than, equal to, 
or greater than their corresponding maximum possible value in the wall region, also 
given by 0-b. Note that the thickness of the wall region is considered negligible 
(Az+O) in cases 0-b and 0-e. 
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FIGURE 3. The transition region near a flat surface 

Case 0-b is synonymous with the critical condition described above and 0-c 
indicates that the no-slip condition cannot be met a t  the wall without the fluid 
undergoing the discontinuous transition alluded to earlier. 

A discontinuity at this transition line would imply discontinuities in the local shear 
stresses between the two regions. For a perfectly vertical jet flowing against a 
perfectly flat surface, this may be of no consequence to the flow. In the absence of 
these perfect conditions, a net shear force could arise a t  the transition line effectively 
pulling the jet column in tho direction of this net force and away from the jet 
centreline. 

The initial stages of viscous fluid buckling would then have been initiated. Large 
compressive stresses would arise a t  the interface due tlo the decelerations inherent in 
the discontinuity. The fluid column according to this hypothesis, would have started 
sliding away from its equilibrium position. This displacement from equilibrium leads 
to the initiation of an oscillatory motion of fixed frequency, the mechanics of which 
will be demonstrated in $5.  The ensuing frequency will be calculated in the case of 
a plane jet, in $6. 

Thus we propose that the critical condition for the onset of buckling of a jet in the 
absence of gravitational or surface tension forces is that the transition line occurs a t  
or very close to the plate surface and hence from the near-wall condition, 

awitical  = H/d2. 

Since the far-field value of the perturbation growth rate, a must always equal the 
near-wall value a t  the transition line, this implies that  fluid buckling will occur 
when 

H c  - _  - d2 afar-rieldl 
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where d is the jet diameter, do,  for a round jet or the jet thickness. d,, for a plane jet. 
H, is the critical plate-orifice distance. 

In  the following sections, we will determine the far-field values of a for the two 
cases of round and plane jets so as to  predict the critical plate-orifice distances for 
buckling for these jet geometries based on the hypothesis of this section. 

3. The governing equations for azimuthal instability in round jets 
We now consider the problem of azimuthal instability in low-Reynolds-number 

bounded round jets. We adopt an approach based on that of Batchelor & Gill (1962) 
with appropriate modifications for this specific problem. 

The perturbation velocity is u with components u,, u, and uo in cylindrical (x, r ,  $) 
coordinates. If the main jet has constant axial velocity U ,  then the momentum 
equation is au au 1 

-+U- = --v p+vVZu,  
at ax 

where p is the perturbation pressure, p is the fluid density and v is the kinematic 
viscosity. Conservation of mass results in the continuity equation 

We assume these velocity components to be of the form 

u,, u,, uo = R [ {F(r) ,  G(r) ,  Z ( r ) }  ein@+as-act 1 1  

and the perturbation pressure is 

I. P - - R [p(,) ein$+az-act 

P 

The substition of (3) and (4) into ( 1 )  and (2) produces the following: 

-acF+aUF = -aP+v F ' + - F -  ---a2 F , { : (:: 1 1 

1 H 
r r 

a F + G + - G - n -  = 0. 

For the case n = 1, (5) may be rewritten as follows: 

where 

or if U" = ( U - c ) .  
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We assume a pressure variation given by 

P ( r )  = BJl ( B Y ) .  

Then (9) is satisfied by 
aK 

Y ( r )  = A J l  (mr) + tJ1 (by). v(m2 - p) 

The physical requirement that  F ( r )  be bounded a t  r = 0 is satisfied by (12) 
We also choose a solution to (7) so that 

1 
then H”+-H’+m2H = 0. 

r 

and here also, the physical condition of boundedness on H ( r )  implies that  

H ( r )  = EJ,, (mr). 

In order t o  satisfy mass conservation requirements, (8) must govern the 
rclationship between J’(r ) ,  G ( r )  and H ( r ) .  Hence from continuity : 

J ,  (Pr)  = 0. (16) I 1 a2 

v(m2 - p) @A-Em)J ,  (mr)+H z J , ( p r ) + - - J 1  21, (BY)+ L” 
This is satisfied if aA = Em and 6: = 0. 

There must be continuity of the normal stress across the jet boundary and 
therefore, if pa is the pressure in the inviscid, stationary outer medium, and p ,  the 
pressure in the jet, then at the interface between the two fluids 

or in non-dimensional terms 

where Re is the Reynolds number. 
If we neglect the density of the quiescent outer medium, then pa = 0 and the 

boundary condition becomes 

0 = -p ,+2- - - r -  

For low-Reynolds-number flows of the type under discussion here, it is necessary for 
(au,/ar)l r = a  to be zero to ensure that the perturbation pressure at the interface p ,  
does not itself acquire unreasonably large values which would be inconsistent with 
its being a perturbation quantity. Hence we may write 

p ,  = 0, 

and 
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Substituting for u, in (17), we have 

hence 

and 

A consequence of (10) is that  

J ,  (ma)  = 0, 

ma = 3.8317, ... 

where m is given by (19), and hence the critical plate-orifice distance, from the 
hypothesis of $ 2  is given by 

H c  _ -  - iRe + i [Re2 + 234.9];, 
do 

for the case of azimuthal instability where 

U*do 
Re = -. 

V 

or for the small Reynolds numbers involved, 

H c  - = 7.6634. 
d0 

For the case studied in this section, the existence of a tangential stress component 
suggests that  the motion that would accompany the discontinuity will be of a rotatory 
nature. 

It can easily be shown, using techniques similar to those in the development above, 
that  for a non-azimuthal (n = 0) two-dimensional t,reatment of the round jet, the 
corresponding value of a is 4.8096/d,, hence based on the earlier hypothesis, the 
critical buckling height of a round jet for a purely two-dimensional, and hence a 
pendulum-like, oscillation is given by H J d ,  = 4.8096. This mode of buckling is 
known to occur (Cruickshank & Munson 1981) but is not the preferred mode. The 
helical or rotatory mode (n  = 1 )  treated e,arlier, appears to be the preferred mode. 

We continue this analysis by studying the conditions under which a plane jet in 
stagnation flow would behave according to the scenario of $2.  

4. Instability in a plane jet 
Consider a plane two-dimensional jet flowing with constant velocity U in the axial 

direction, x. The equations obtained from a perturbation analysis of the jet column 
for perturbation velocities u, v are the continuity equation 

au av -+- = 0, ax ay 

and the two momentum equations 
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a!P 
u=-. 

dY 
t) = -- 

ax a!/ 

118 

Let 

then if we eliminate pressure between the two momcntum equations. wc obtain 

where 

and Y is the perturbation streamfunction. Let the streamfunction's ckpcndence on 
the axial distance x be proportional to eax, and on time to ePsct then if 

we have ($+mz)(-$+u2) Y(y) = 0. 

We define xl(y) and x2(y) such that (Basset 1894) 

y =  x1+xzt 

then 

and 

Hence 

Since dY/dy must be an even function, B = D = 0. 

Y(y) = A sin my + B eos my + G sin ay + 11 cos ay.  

The pressure is obtained from ( 2 5 )  which is equivalent to  

and p(y) = -pU* Ca cos ay + constant, (32) 

where the exponential factor has been omitted for brevity. 
Similar considerations for the outside, stagnant medium with negligible density 

gives p(y) = constant, and setting this constant to zero results in the following 
condition a t  the jet interface 

where t is the jet thickness 

-ca cosagt = 0, (33) 

From (33) cosgut = 0, (34) 

'at = 3n hence 2 9 2  9 ' ' .  

or in terms of jet thickness d, 
(35) 

ad,= ( 2 n + l ) n  ( % = o > l ,  ...), (36) 
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and the critical non-dimensional plate-orifice distance for buckling in a plane jet is, 
according to our hypothesis, given by 

H,/d,  = ( 2 n + I ) n  (n = 0, I ,... ). (37) 

In  the next section. a simple one-dimensional model of the jet after displacement 
from equilibrium (from the hypothesis of $ 2 ,  is developed and used for obtaining the 
frequency of the oscillations that are observed after this displacement occurs for the 
case of a plane jet. 

5. The consequences of a displacement of the jet column 
Cruickshank (1980) has shown that the linearized equation governing the 

transverse motion of a thin fluid column is of the following form which, for small 
displacements, is exact for thin, shear-free flows 

azY a Z y  ay 
a x 2  ax at a t 2  ax (T - mv2) a2Y -- 2mv -- m--mg- = 0, 

where T = axial tensile force, m = mass/unit length of the fluid, v = axial velocity 
along the jet = U ,  g = acceleration due to gravity, y = displacement of jet from 
equilibrium, x = axial distance along the jet. A complete derivation of the two- 
dimensional equivalent of (38) is also to be found in Cruickshank (1987). 

The assumption that T ,  m and v are not functions of y has its basis in the classical 
linearized modelling of vibrating media. Ideally, the tension in a vibrating string, for 
example, must change with vertical position. Linear models do not include this 
effect. Another example of this was the study of the moving vibrating threadline 
where the velocity was assumed constant (Swope & Ames 1963), although clearly this 
is not the case since it has to have a vertical time-dependent component. We use 
these same assumptions in this model. 

Consider the oscillation equation with spatially constant T, m, and v. When the 
stagnating fluid jet is slightly displaced from its equilibrium position, for the reasons 
stated in $ 2 ,  we expect that this change in geometry will result in very small time- 
dependent changes in the value of the normal compressive force set up by the 
discontinuity in the perturbation velocities. 

To model this time dependency, we assume that 

T = -T,+$(t), (39) 

where -To represents the initial constant compressive force within the fluid caused 
by the discontinuity and @(t )  is a very small perturbation on this value. Expanding 
$ ( t )  in a Fourier series and retaining only the first terms gives 

T = -T,+T, cOset. (40) 

Then substituting for T in the oscillation equation, we have 

a 2 Y  a2y a z y  ay 
a x 2  axat at2 ax (-To+T, cos~t-mv2)--2mv--m--mg- = 0. 

For the fluid-buckling problem, photographs (figure 1 for example) indicate that 
y(x, t )  % ehzyl ( t )  is a reasonable approximation of the displaced motion. Here h is 
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assumed constant. Note that I )  is still presumed to  be a constant for the purpose of 
this model. 

Based on Bolotin's (1964) approach to a similar problem, we let yl(t) = U ( t ) c ( t ) ,  
where c ( t )  = Ce+"' and c is a constant. Thus, we obtain 

where 
d ( * ) = -  
dt ' 

To h2 
l2; = 7, 

(43b) 
T and 2p* = L. 
To 

From (42) we may infer that  the impact on the fluid column of the initial 
displacement from equilibrium combined with the compressive load arising from 
the discontinuity, may be the imposition of a transient physical motion whose 
characteristics are determined by (42) and (43a, b) .  

According to the Mathieu equation stability diagram (Bolotin 1964) the first 
critical point for instability corresponds to the value of 0 such that 

In  the real world where disturbances are random, 8 is essentially arbitrary, hence 
this condition is not a difficult one to  meet. For the specific model under 
consideration here (negligible surface tension and gravitational forces with constant 
jet diameter in the region away from the wall) the requisite compressive stress arises 
only when the discontinuity in the perturbation velocities occurs. I n  the absence of 
that effect, the stress along the jet is either zero (constant diameter jet) or positive 
(if there is acceleration under gravity). For either of these conditions, 52, is either zero 
or it has no real value. Thus no self-sustaining oscillations can take place and the jet 
is stable. Hence these self-sustaining oscillations take place only because of the 
existence of the compressive stress set up by the discontinuities in the perturbation 
velocities. 

Mathieu's equation (42) indicates that  the self-sustaining oscillation occurs a t  a 
frequency given by 

and (44) suggests that  these oscillations can take place in the absence of gravity ; that  
is, with g = 0. Cruickshank & Munson (1981) have shown photographs of such 
oscillations in the horizontal plane. 

6. Predicting the critical buckling frequency for a plane jet 
From (44), the critical frequency a t  which fluid 

in the absence of gravitational effects, by (43a) :  

d = - h .  To 2 

m 

The model used here, with proper interpretation 

buckling is first initiated is given, 

of the T and m terms, would be 
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applicable to  both axisymmetric and plane jets. Comparisons of the earlier 
perturbation model and the model of $5 suggests that  a and h may be the same, thus 
it appears possible to predict the frequency that accompanies buckling. 

From (37) it is not clear which value of n would correspond to the experimentally 
observed condition, however, the data (with which comparisons will be shown 
shortly) appear to indicate that the case n = 1 is the preferred mode. 

Consider the rase of the plane jet. From (36), using n = 1, we have 

ad, = 3 ~ ,  

hence 

or 
(45) 

Cruickshank & Munson (1982) have shown that the compressive stress go associated 
with fluid buckling is of the form 

20-a 2 = 4a* (1  -a*) / ( l  +a*)2. 

PV1 

In  (46), p is the fluid density, v1 is the fluid velocity in the main jet and a* is an 

a* has a value given by 0.65 d a* d 0.75 for the plane jet, with a reported average 

For the plane jet, if we use the average value of a* in (46), an estimate of the 

energy loss coefficient associated with fluid buckling. 

value of 0.70. For the axisymmetric jet the average value of a* is 0.76. 

compressive stress a t  buckling is thus given by 

9 = 0.145. 
P 4  

lising (45) and (47) we can show for the plane jet that 

(47) 

at the onset of buckling, where d, is the thickness of the jet and Q' is the volume flow 
rate per unit slit width. In  (48), the gravity term has been added to both sides of the 
equation in order to generate non-dimensional terms that are consistent with those 
that were used in the presentation of the experimental data. 

The model developed here would be applicable to a plane jet of infinite width since 
the additional effects that  would arise in jets of finite width D were ignored. Indeed, 
dimensional analysis (Cruickshank 1980) shows that there is likely to be a dependence 
on the non-dimensional parameter D / d ,  if the flow is not purely one-dimensional. 
Figure 2 clearly indicates that  these added effects cannot be ignored if we are to 
model the experimental conditions reasonably accurately. 

The choice of a correction factor must be determined by the observed fact that  the 
oscillation frequency of the jet scales with the inverse of the D l d ,  ratio. Secondly, the 
width of the jet a t  the buckling location is smaller than that near the slit (figure 2). 
Thus the mean flow rate per unit width is in reality higher a t  the buckling point than 
i t  is when based on the slit width. Figure 2 suggests that the ratio between the two 
values may be approximately equal to 4 for the case D / d ,  = 10.0. 
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FIGURE 4. Theory zw. experiment : Frequency at  onset of buckling for plane jet. D x d, = 10.0. 
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FIGURE 5(a).  For caption see facing page. 
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FIGURE 5 .  Comparisons of theoretical prediction and experimental data  : critical buckling height 
for plane jet. 

We therefore use a correction factor for these geometrical effects and for surface 
tension effects, of the form 

The non-dimensional frequency at the onset of buckling then becomes (for 
D / d ,  = 10.0) 

(f$ = 2.39 ($$) p)t (g)' - (5J. 
Figure 4 shows a comparison of the measured non-dimensional frequency 

(Cruickshank 1980) versus that predicted by (50). The comparison is relatively good. 
5 FLY 193 



124 J .  0. Cruickshank 

1 
1 10 100 1000 10 000 

(6) 1000 

€ 0 silicone oil - = 0.23 
(;z 1 

- -theory 1 

t 

0.1 1 10 100 1 O( 

pg  
Yd4 

FIGURE 6(a ,  b ) .  For caption see facing page. 

There is a fair amount of scatter in thc measurcd values of the encrgy loss coefficient 
used here (Cruickshank & Munson 1982) and so the fact that  there is some scatter 
here is not too surprising. 
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FIGURE 6. Comparisons of theoretical prediction and experimental data : critical buckling height 
for axisymmetric jet. 

7. Results and discussions 
Figures 5 (a-c) and 6 (a-c) show comparisons with experimental data (Cruickshank 

1980) of the predicted critical non-dimensional plate-orifice distance at which 
buckling is first initiated, for the plane jet and the axisymmetric jet respectively. 

From figures 5(a-c) and ~ ( u - c ) ,  i t  is clear that  there is very good agreement with 
the experimental data at relatively high values of the flow rate parameter (> 10.0). 
At relatively low flow rates, there is divergence between thc theory and the 
experimental data that appears to be a surface tension effect. This is not unexpected. 
At low enough flow rates, surface tension effects are expected to dominate, lcading 
to the break up of the jet. Hence it is not surprising that the effect of surface tension 
begins to make itself felt more and more as the flow rate goes down. 

The buckling height for the plane jet appears to correspond to the case n = 1, 
which is 3x. For the axisymmetric jet, the azimuthal value (n = 1) also appears to be 
the dominant buckling mode (Cruickshank 1980) and these values were used in the 
comparisons. Figure 7 ,  which consists of critical plate-orifice distances for 
axisymmetric jets with very small values of 

tends to indicate, however, that  the non-azimuthal mode may be the dominant form 
for axisymmetric jets when gravitational, surface tension and flow rate effects are all 
very small. 

In  the absence of gravitational effects, small values of the surface tension and flow 
rate parameters would appear to be the necessary pre-requisite for an initial non- 
azimuthal buckling mode. Thus large diameter jets would be more prone to this type 
of buckling than small diameter ones, as confirmed by Cruickshank & Munson (1981). 

5-2  
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F i G i r R E  7 .  Critical buckling heights for axisymmetrica jets with low surfaco tc.nsion and flow rate 
parameters. Values of q d 3 / v 2 :  ., 2.23 x 1 O P :  0. 3.33 x 1 W ;  A. 8.49 x 10P: 0. 2.57 x 0.  
2.85 x x . 8.48 x 7, 9.42 x theory. 

I n  the presence of gravity, the jet diameter narrows as the plate is moved further 
away from the orifice and a transition to the azimuthal mode would be expected to 
occur at some point. From the experimental data (Cruickshank 8r. Rlunson 1981), it 
appears that this occurs in a chaotic transition region in which both the azimuthal 
and non-azimuthal modes appear intermittently. producing a random behaviour 
that was difficult to characterize experimentally. 

The results of the perturbation analysis of the earlier sections indicate that when 
thc axisymmetric jet becomes initially unstable in the pendulum mode, the helical 
instability may kick in at its critical value of H / d .  Based on the theory developed in 
those sections, the ratio of plate-orifice distances between the onset of the pendulum 
mode and its transition to the helical mode when it occurs should be equal to the ratio 
4.8096/7.6634 which approximately equals 0.63 (1/1.6). Figure 7 ( b )  of the 
Cruickshank & Munson paper (1981) shows this to be so. The ratio between the two 
transition points clearly approximates the value indicated above. 

8. Conclusions 
A theoretical analysis of the problem of fluid buckling has been performed and 

comparisons with experimental data show quite good agreement, the slight 
divergence between theory and experiment probably being accounted for by surface 
tension effects and changes in the jet profiles that  were ignored in the models. 

Professor Bruce R. Munson's help in the completion of this work through very 
useful and lengthy discussions, is gratefully acknowledged. 
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